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Motivation

Classical Problem: Design AND-OR-NOT circuit for ϕ : � � 2 � n � � 2, with

� 2� � 0 � 1 �

One Answer: (see e.g. Feynman on Computation, section 2.4) Wire an
AND circuit for each bit string on which ϕ� 1; connect circuit blocks by OR’s

� Restatement:

– Produce a decomposition of the function ϕ

– Produce circuit blocks accordingly

Matrix decompositions: decompose unitary matrices,
e.g. quantum computations
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Motivation, Cont.

However, the approach described here is so simple and general
that it does not need an expert in logic to design it! Moreover, it is
also a standard type of layout that can easily be laid out in silicon.
(ibid.)

Remarks:

� Analog for quantum computers?

� Simple & general?
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Outline

I. Two Qubit Circuits (CD)
II. Optimal Relative Phase Circuits

III. Half CNOT per Entry (CSD)
IV. Differntial Topology & Lower Bounds
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The Magic Basis of Two-Qubit State Space

� ���
� ����

��� � � � � � 00 �
	 � 11 � �� � 2
���  � � � � 01 ��� � 10 � �� � 2

���� � � � i � 00 ��� i � 11 � �� � 2

��� � � � � i � 01 �
	 i � 10 � �� � 2

Remark: Bell states up to global phase; global phases needed for theorem

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a 4� 4 unitary u, global-phase chosen for det � u �� 1

� Compute matrix elements in the magic basis

� � All matrix elements are real ��� � � u� a � b �

5



Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a
matrix decomposition of the following form:

u� � d � f � a � b � c �

for b � c � d � f are tensors of one-qubit computations, a� ∑3
j� 0 eiθ j ��� � �� � � �

Note that a applies relative phases to the magic or Bell basis.

Circuit diagram: For any u a two-qubit computation, we have:

u

b

a

d

��

c f
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Application: Three CNOT
Universal Two-Qubit Circuit

� Many groups: 3 CNOT circuit for 4� 4 unitary:
(F.Vatan, C.P.Williams), (G.Vidal, C.Dawson), (V.Shende, I.Markov, B-)

– Implement a somehow, commute SWAP through circuit to cancel

– Earlier B-,Markov: 4 CNOT circuit w/o SWAP, CD & naı̈ve a

u
B 76540123 Rz � 76540123 D

��

C � Ry 76540123 Ry � F
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Two-Qubit CNOT-Optimal Circuits

Theorem:(Shende,B-,Markov) Suppose u is a 4� 4 unitary normalized so
det � u �� 1. Label γ � v �� �� iσy ��� 2v �� iσy ��� 2vT . Then any v admits a circuit
holding elements of SU � 2 � � 2 and 3 CNOT’s, up to global phase. Moreover,
for p � λ �� det � λI4� γ � v �� the characteristic poly of γ � v � :

� (v admits a circuit with 2 CNOT’s)� � (p � λ � has real coefficients)

� (v admits a circuit with 1 CNOT)� � (p � λ �� � λ	 i � 2 � λ� i � 2)

� (v � SU � 2 � � SU � 2 � )� � ( γ � v �� � I4 )
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Optimal Structured Two-qubit Circuits

B � Rx � D B � D

C 76540123 Rz 76540123 F C 76540123 F

� Quantum circuit identities: All 1 � 2 CNOT diagrams reduce to these

� Computing parameters: useful to use operator E, E � j �� ��� � �

E
Rx � π� 2 � �

��

S 76540123 S†
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III. Half CNOT per Entry (CSD)
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Relative Phase Group

� Easiest concievable n-qubit circuit question: How to build circuits for

A � 2n � �
2n � 1

∑
j� 0

eiθ j � j �� j � ; θ j � � ?

� A � 2N � commutative� � vector group

– logA � 2n � � � � 2n � carries matrix multiplication to vector sum

– Strategy: build decompositions from vector space decompositions

– Subspaces encoded by characters, i.e. continuous group maps
χ : A � 2n � � U � 1 �
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Characters Detecting Tensors

� ker logχ is a subspace of � � 2n �

� Subspaces � j ker logχ j exponentiate to closed subgroups

Example: a� ∑2n � 1
j� 0 z j � j �� j � � A � 2n � has a� ã � Rz � α � if and only if

z0� z1� z2� z3� � � �� z2n � 2� z2n � 1

So a factors on the bottom line if and only if a � �

2n� 1 � 1
j� 0 ker χ j

for χ j � a �� z2 jz2 j � 2� � z2 j � 1z2 j � 3 � .
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Circuits for A

�

2n

�

Outline of Synthesis for A � 2n � :

� Produce circuit blocks capable of setting all χ j� 1

� After a� ã � Rz, induct to ã on top n� 1 lines

Remark: 2n � 1� 1 characters to zero� � 2n � 1� 1 blocks, i.e. one for each
nonempty subset of the top n� 1 lines

XOR

� 1 � 3 � � Rz �

� �

�� � �
76540123 76540123 Rz 76540123 76540123
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Circuits for A

�

2n

�

, Cont.

Tricks in Implementing Outline:

� If # � � S1� S2 �� � S1� S2 �� � 1, then all but one CNOT in center of
XORS1 � Rz � XORS2 � Rz � cancel

� Take subsets in Gray code, most CNOTs cancel

� Final count: 2n� 2 CNOTs

a

� � � � Rz

�� � � Rz 76540123 Rz 76540123

Rz 76540123 Rz 76540123 Rz 76540123 Rz 76540123

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Uniformly Controlled Rotations
(M.Möttönen, J.Vartiainen)

Let �v be any axis on Block sphere. Uniformly-controlled rotation requires
2n � 1 CNOTs:

uni

k

�R �v� � ��

R �v � θ0 � 02 � � � 02
02 R �v � θ1 � � � � 02
02 02

. . . 02
02 02 � � � R �v � θ2n� 1 � 1 �

��

R �v

Example: Outlined block is diag �Rz � θ1 � � Rz � θ2 � � � � � � Rz � θ2n� 1 �� � � uni
n � 1 �Rz� up

to SWAP of qubits 1,n

Shende, q-ph/0406176: Short proof of 2n � 1 CNOTs using induction:

� � 2n �� I2 � � � 2n � 1 ��� σz � � � 2n � 1 �
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Universal Circuits

Goal: Build a universal quantum circuit for u be 4n� 4n unitary evolution

� Change rotation angles: any u up to phase

� Preview: At least 4n� 1 rotation boxes R �v, at least 1
4 � 4n� 3n� 1 � CNOTs

� Prior art

– Barenco Bennett Cleve DiVincenzo Margolus Shor Sleator J.Smolin
Weinfurter (1995) � 50n2� 4n CNOTs

– Vartiainen, Möttönen, Bergholm, Salomaa, � 8� 4n (2003),

� 4n (2004)
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Cosine Sine Decomposition

Cosine Sine Decomposition: Any v a 2n� 2n unitary may be written

v� a1 0
0 b1

c � s
s c

a2 0
0 b2

� � a1� b1 � γ � a2� b2 �

where a j � b j are 2n � 1� 2n � 1 unitary, c� ∑2n� 1 � 1
j� 0 cos t j � j �� j � and s� ∑2n� 1 � 1

j� 0 sin t j � j �� j �

� Studied extensively in numerical matrix analysis literature

� Fast CSD algorithms exist; reasonable on laptop for n� 10
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Strategy for � 4n

� 2 CNOT Circuit

� Use CSD for v� � a1� b1 � γ � c1� d1 �

� Implement γ� c � s
s c

as uniformly controlled rotations

– uniform control� � few CNOTs

� Implement a j� b j� a j 0
0 b j

as quantum multiplexor

– Also includes uniformly controlled rotations, also inductive

� Induction ends at specialty two-qubit circuit
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Quantum Multiplexors

� Multiplexor: route computation as control bit 0,1

� v� a� b: Do a or b as top qubit � 0 � , � 1 �

� Diagonalization trick: Solve following system, d � A � 2 j � 1 � ,
u,w each some 2n � 1� 2n � 1 unitary

a � udw
b � ud†w

� Result: a� b� � u� u � � d� d† � � w� w �� � I2 � u � � uni
n � 1 �Rz� � I2 � w �
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Circuit for

�

1 � 2

�

CNOT per Entry

u

Rz Ry Rz

v4 v3 v2 v1�

��

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

� Outlined sections are multiplexor implementations

� Cosine Sine matrix γ: uniformly controlled � uni
n � 1 �Ry�

– Only 2n � 1 CNOTs, converts to Rz by conjugation by HS

21



Circuit Errata

� Lower bound� � (can be improved by no more than factor of 2)

� 21 CNOTs in 3 qubits: currently best known

� � 50% CNOTs on bottom two lines

– Adapts to spin-chain architecture with � 4 � 5 �� 4n CNOTs

– Quantum charge couple device (QCCD) with 3 or 4 qubit chamber?
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Sard’s Theorem

Def: A critical value of a smooth function of smooth manifolds f : M � N is
any n � N such that there is some p � M with f � p �� n with the linear map

� d f � p : TpM � TnN not onto.

Sard’s theorem: The set of critical values of any smooth map has
measure zero.

Corollary: If dim M � dim N, then image(f) is measure 0.

� U � 2n �� � u � �

2n � 2n
; uu†� I2n � : smooth manifold

� Circuit topology τ with k one parameter rotation boxes induces smooth
evaluation map fτ : U � 1 �� �

k � U � 2n �
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Dimension-Based Bounds

� Consequence: Any universal circuit must contain 4n� 1 one parame-
ter rotation boxes

� No consolidation: Boxes separated by at least 1
4 � 4n� 3n� 1 � CNOTs

– v Bloch sphere rotation: v� RxRzRx or v� RzRxRz

– Diagrams below: consolidation if fewer CNOTs

Rz � � Rz � �

76540123

��

76540123 Rx 76540123

��

76540123 Rx
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On-going Work

� Subgroups H of unitary group U � 2n �

– More structure, smaller circuits?

– Symmetries encoded within subgroups H

– Native gate libraries?

� Special purpose circuits

– Backwards: quantum circuits for doing numerical linear algebra?

– Entanglement dynamics and circuit size
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http://www.arxiv.org Coordinates

� Two-qubits: q-ph/0308045

� Diagonal circuits: q-ph/0303039

� Uniform control: q-ph/0404089

� � 1� 2 � CNOT/entry: q-ph/0406176

� Circuit diagrams by Qcircuit.tex: q-ph/0406003
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